<sub id="zkqbv"></sub>

<cite id="zkqbv"><li id="zkqbv"></li></cite>
  • <sub id="zkqbv"></sub>

    1. 中文字幕亚洲乱码熟女1区2区,免费看一区二区三区四区,色男人的天堂久久综合,粉嫩少妇内射浓精videos,亚洲色大成网站WWW久久,国产AV无码专区亚洲AV麻豆,少妇人妻系列无码专区系列,丁香婷婷在线观看
      技術文章您的位置:網站首頁 >技術文章 >客戶文章 ▏DAP-seq技術助力揭示水稻氮素吸收直接途徑和菌根途徑的新機制

      客戶文章 ▏DAP-seq技術助力揭示水稻氮素吸收直接途徑和菌根途徑的新機制

      更新時間:2025-02-24   點擊次數:910次

      2025年2月18日,南京農業大學徐國華、陳愛群教授團隊在PNAS期刊(IF=9.4)上發表了題為“OsNLP3 and OsPHR2 orchestrate direct and mycorrhizal pathways for nitrate uptake by regulating NAR2.1-NRT2s complexes in rice"的研究論文,該研究利用DAP-seq技術,系統的闡明了兩個轉錄因子OsNLP3和OsPHR2協同調控硝酸鹽轉運蛋白復合體NAR2.1-NRT2s介導的氮素吸收直接途徑和菌根途徑的分子機制。

      image.png

      研究背景

      氮(N)是植物生長必需的營養元素,大多數陸地植物進化出了兩種氮吸收途徑:一種是直接通過根系吸收的途徑,另一種是通過與叢枝菌根(AM)真菌共生的途徑。然而,這兩種途徑在硝酸鹽吸收過程中的相互作用尚不明確。

      研究結果

      采用分區培養系統研究發現,水稻通過菌根吸收硝酸鹽的途徑比吸收銨更高效。葡糖醛酸酶(GUS)實驗顯示AM共生促進硝酸鹽吸收和同化,上調相關還原酶基因表達,且在含叢枝細胞中表達增強。

      image.png

      為了鑒定更多對水稻AM共生硝酸鹽吸收有重大貢獻的候選基因,作者通過qPCR分析,篩選出對硝酸鹽吸收具有關鍵作用的轉運基因:OsNRT2.1OsNRT2.2OsNRT2.3,以及編碼促進NRT2蛋白轉運到質膜的伴侶蛋白基因OsNAR2.1葡糖醛酸酶(GUS)實驗顯示OsNAR2.1OsNRT2s在菌根細胞中的表達顯著上調,這些基因在共生硝酸鹽吸收中起重要作用。

      image.png

      隨后,通過在osnar2.1敲除株系和野生型(WT)植株中研究發現,OsNAR2.1功能喪失導致非菌根化和菌根化根OsNRT2.1/2.2/2.3的表達降低,說明OsNAR2.1介導的運輸系統對于收硝酸吸收的直接途徑和菌根途都是必需的。由于玉米ZmNAR2.1也顯示出 AM 誘導的表達模式,進一步研究發現玉米ZmNAR2.1也參與共生硝酸鹽吸收,這表明該途徑在禾本科物種中保守。

      image.png

      NLPs 被認為是硝酸鹽信號傳導中的主要轉錄因子,在陸地植物中廣泛保守,研究發現OsNLP3在調節硝酸鹽吸收直接和菌根途徑中起到關鍵作用。為了進一步研究OsNLP3轉錄因子對硝酸鹽吸收和代謝的調控機制,作者進行了酵母單雜交(Y1H)、電泳遷移率變動分析(EMSA)和染色質免疫共沉淀ChIP-qPCR分析,結果顯示OsNLP3能夠直接結合到OsNAR2.1啟動子的NRE-like1和NRE-like3基序上。熒光素酶報告基因分析結果顯示,OsNLP3激活OsNAR2.1啟動子。

      image.png

      OsNAR2.1、OsNRT2.1OsNRT2.2的啟動子中至少有一個拷貝的PHR結合序列,因此推測,OsPHRs是否也可以調控硝酸鹽吸收。EMSA 、Y1H、熒光素酶報告實驗顯示,OsPHR1/2/3可以結合并激活OsNRT2.1OsNRT2.1OsNRT2.2的啟動子。osphr2突變體表現出降低的菌根共生效率和氮吸收能力這說明OsPHR2正調控菌根硝酸鹽吸收途徑。

      OsSPX4作為主要的細胞內磷傳感器,能夠通過與OsPHR2和OsNLP3相互作用,整合磷和硝酸鹽信號通路。為了確定OsSPX4是否能夠干擾OsPHR2OsNLP3OsNAR2.1激活,作者在煙草葉片中進行了共轉化實驗,結果顯OsSPX4 夠顯著抑制OsPHR2OsNLP3LUC的激活。通過進一步對OsSPX4功能的研究發現,OsSPX4可能通過與OsPHR2OsNLP3的相互作用來調控菌根共生硝酸鹽和磷酸鹽吸收途徑。

      image.png


      為了更深入地了解OsNLP3調控菌根共生和共生硝酸鹽吸收的機制作者進行了DNA親和純化測序(DAP-seq),共鑒定出超過84,000個潛在的OsNLP3靶標區域,大約21%的結合位點位于啟動子區域。Motif富集分析發現,TGA(C)CCCT(C) 是OsNLP3結合位點顯著富集的基序。鑒于OsPHR2和OsNLP3共同調控共生硝酸鹽吸收,對OsNLP3和OsPHR2的潛在靶基因與在AM共生根中的差異表達基因(DEGs)進行了重疊分析。發現,在AM共生根中上調的1,122個基因同時也是OsNLP3和OsPHR2的共同靶基因。這些靶基因包括多個參與氮吸收和代謝的關鍵基因,例如NAR2.1、NRT2s、NPF4.5NiR1。此外,一些在AM啟動和叢枝發育中起關鍵作用的基因也被鑒定為靶基因,例如SL生物合成基因D10D17、脂質生物合成基因RAM2FatMDMI3。

      image.png

      通過在水稻原生質體中進行轉錄激活實驗,發現D17、NiR1、DMI3OsRLI1的啟動子可以被OsNLP3和OsPHR2分別激活,從而證實了DAP-seq的結果。此外,除了RLI1osnlp3菌根共生根中的表達水平與野生型菌根共生根相比沒有顯著變化外,其他選定基因在osnlp3osphr2突變體的菌根共生根中表現出顯著下調。這些結果表明,OsPHR2和OsNLP3共同調控共生硝酸鹽吸收和AM共生途徑

      研究結論

      該研究闡明了協調氮素吸收的直接途徑和菌根途徑的作用機制,完善了菌根氮素營養的調控網絡,為進一步利用菌根途徑提高作物氮素利用效率提供了理論基礎和重要基因資源。

      image.png




      主站蜘蛛池模板: 中文成人无码国产亚洲| 日本国产高清色www视频在线| 国产高清吃奶成免费视频网站| 亚洲综合网站色伊人| 一个人免费观看视频www高清| 又色又污又爽又黄的网站 | 精品国产AⅤ一区二区三区4区| 亚洲国产精品久久青草无码| 国产成人AV无码精品无毒| 日韩有码国产精品一区| 国产偷窥厕所一区二区| 使劲快高潮了国语对白在线| 久久人人97超碰国产精品| 狠狠躁天天躁无码中文字幕| 国产精品久久国产精品99| 色综合久久三十路人妻蜜臀av| 国产小视频在线高清播放| 日韩人妻一区二区三区免费| 免费高潮了好湿h视频| 国产av成人精品播放| 黄色一级视频欧美| 手机看片日韩国产毛片| 国产精品日韩专区第一页| 黄色片子在线观看一区二区三区| 好深好湿好硬顶到了好爽| 男人av无码天堂| 久久av中文字幕资源网| 中文国产日韩欧美二视频| 久久国产午夜精品理论片| 在线观看美女网站大全免费| 一卡二卡三卡四卡视频区| 少妇无码精油按摩专区| 亚洲欧美国产另类视频| 爱性久久久久久久久| 激情五月婷婷综合网| 国产久久精品| 中文字幕亚洲欧美日韩2019| 国产真实乱XXXⅩ视频| 亚洲AV日韩AV永久无码下载| 亚洲精品色午夜无码专区日韩| 国产L精品国产亚洲区久久 |